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5 Linear Algebra 3: Matrix Algebra

Topics: Eigenvalues, eigenvectors, functions of matrices, summation notation

5.1 Motivation and approach

One of the major advantages of representing operators and transformations as matrices is
that this allows us to take advantage of matrix algebra in order to perform computations.
Many of the most important processes in matrix algebra have been streamlined for compu-
tational implementation; indeed, in some sense computers have literally been designed to do
matrix algebra efficiently.

The fundamentals of this matrix algebra are the focus of this third and final module on
linear algebra for the bootcamp. We’ll discuss some of the theoretical underpinnings, briefly,
and also illustrate how to work important types of problems.

5.2 Eigensystems

Conceptual and technical Video: Eigenvectors and eigenvalues by 3Blue1Brown (17:15)

5.2.1 Conceptual framework of an eigensystem

In this section will only discuss operators that act on a given N -dimensional vector space,
or operators that can be represented by square N -by-N matrices. In general, the action of
such an operator Â on a vector |v〉 will yield a new vector |w〉 that is rotated relative to
|v〉. However, operators and their representative matrices often have a set of vectors called
eigenvectors for which the operator only acts to rescale the vector. If k is an eigenvector
of Â, we have

Â |k〉 = λk |k〉 , (5.1)

for some scalar λk, which we call the eigenvalue of Â corresponding to the vector |k〉.
Together, we refer to the eigenvalue-eigenvector pairs as the eigensystem of the matrix.
Finding the eigensystem of an operator is an incredibly important operation in both linear
algebra and quantum mechanics.

It is a fact, that we will not prove, that an Hermitian N -by-N matrix will have N
eigenvector/eigenvalue pairs. These eigenvalues will be exclusively real, and the eigenvectors
for different eigenvalues must be orthogonal. (You will prove these latter two statements in
your quantum coursework, and you will employ all three of them repeatedly.)
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5.2.2 Solving for an eigensystem

Technical video: Example solving for eigenvalues of a 2x2 matrix by Khan Academy (5:38)
Technical video: Finding eigenvectors and eigenspaces example by Khan Academy (14:33)
Technical video: 3 x 3 Determinant by Khan Academy (10:01)

We can follow a general procedure to solve for the eigensystem of a matrix according to Eq.
(5.1). We can represent our operator and vector as a matrix and column vectors following
the procedures above, such that we’re ultimately interested in solving the matrix eigenvalue
problem

Ak = λkk = λk13k, (5.2)

where 13 is the 3-by-3 identity matrix. This is equivalent to finding the eigenvalue λk and
corresponding eigenvector k that satisfies

(A− λk1N) k = 0. (5.3)

This equation is satisfied by values of λk that satisfy the characteristic equation of the
matrix A, which is given by

det (A− λk13) = 0. (5.4)

Once we solve for the values of λk that satisfy the characteristic equation, we can use them
to find the eigenvectors they correspond to.

We won’t belabor determinant theory here. We write the determinant of a matrix us-
ing vertical lines, and 2-by-2 and 3-by-3 matrices are obtained according to the following
equations:

det(M2) =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc (5.5)

det(M3) =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = aei+ bfg + cdh− ceg − bdi− afh (5.6)

There is a systematic procedure for obtaining higher-order determinants, but we do not
include it here.

Let’s illustrate this by solving for the eigensystem of the following 3-by-3 matrix:

A =

 5 2i 0
−2i 1 0

0 0 −3

 . (5.7)

We’ll break the process of solving the eigensystem into a few steps:

1. Determine the characteristic equation of the matrix A. We do this using Eq. (5.4),
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which gives

det(A− λk13) = det

 5 2i 0
−2i 1 0

0 0 −3

− λ
1 0 0

0 1 0
0 0 1


=

∣∣∣∣∣∣
5− λk 2i 0
−2i 1− λk 0

0 0 −3− λk

∣∣∣∣∣∣
= (5− λk) (1− λk) (−3− λk)− (2i)(−2i) (−3− λk)
= (−3− λk)

(
λ2
k − 6λk + 1

)
(5.8)

2. Find the roots of the characteristic equation. The roots of the equation are the values
of λk that make the equation equal to zero. We can further factorize the equation
determined above to write

(−3− λk) (λk − 2) (λk + 3) = 0. (5.9)

In this form, it is clear that the roots of the equation are

λk = 2,−3,−3. (5.10)

Make note of the fact that the value of -3 appears twice. We call the redundancy of this
eigenvalue degeneracy, saying things like “the eigenvalue -3 is two-fold degenerate.”

3. Solve for the eigenvectors for each eigenvalue. We do this by plugging each of the
eigenvalues into the characteristic equation in turn, labeling the basis vectors |e1〉, |e2〉,
and |e3〉 and labeling the eigenvectors |v1〉, |v2〉, and |v3〉.

λk = 2

The eigenvalue equation for this eigenvalue is

A |e1〉 = 2 |e1〉 → (A− 2) |e1〉 = 0. (5.11)

In expanded form, this is written5− 2 2i 0
−2i 1− 2 0

0 0 −3− 2

c1

c2

c3

 =

0
0
0


 3 2i 0
−2i −1 0

0 0 −5

c1

c2

c3

 =

0
0
0

 . (5.12)

If we perform the matrix multiplication defined from this equation, this results in the
following system of equations 

3c1 + 2ic2 = 0

−2ic1 − c2 = 0

−5c3 = 0.

(5.13)
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From these equations, we must have c3 = 0. We can obtain the other two coefficients
by solving

3c1 + 2ic2 = −2ic1 − c2

(3 + 2i) c1 = (−1− 2i) c2

c1 = −1 + 2i

3 + 2i
c2

= −7 + 4i

13
c2. (5.14)

This equation defines the proportionality of c1 and c2. Their exact values are arbitrary,
and we will choose them according to the requirement that the resulting eigenvector is
normalized. Assuming our initial basis is orthonormal, the normalization condition is

|c1|2 + |c2|2 = 1∣∣∣∣−7 + 4i

13
c2

∣∣∣∣2 + |c2|2 = 1(
65

169
+ 1

)
c2

2 = 1

c2 = ± 13

3
√

26
(5.15)

This means that we have

c1 = ∓7 + 4i

3
√

26
. (5.16)

After all of that (I know it was a lot), we have determined that the normalized eigen-
vector that has eigenvalue 2 is

|v1〉 = ∓7 + 4i

3
√

26
|e1〉 ±

13

3
√

26
|e2〉+ 0 |e3〉 . (5.17)

The absolute sign of the coefficients is undefined by the matrix algebra. In physics,
this absolute sign is referred to as a “phase,” and it is normally the case that phase is
arbitrary, physically.

λk = −3

Repeating this procedure for the two-fold degenerate eigenvalue λk = 3, we obtain the
following matrix equation:  8 2i 0

−2i 4 0
0 0 0

c1

c2

c3

 =

0
0
0

 . (5.18)

The matrix multiplication for this system gives
8c1 + 2ic2 = 0

−2ic1 + 4c2 = 0

0 = 0

(5.19)
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It may seem odd that we wrote the final equation this way, but this is what the
matrix algebra gives us, and it indicates something important: the vector (c1, c2, c3) =
(0, 0, c3) will satisfy this equation for any finite value of c3. If we want the vector to be
normalized, then we’ll choose c3 = 1. Hence, one of the eigenvectors with eigenvalue
−3 is simply

|v3〉 = 0 |e1〉+ 0 |e2〉+ 1 |e3〉 . (5.20)

We can then solve for the other eigenvector, where we have

8c1 + 2ic2 = −2ic1 + 4c2

(8 + 2i) c1 = (4− 2i) c2

c1 =
4− 2i

8 + 2i
c2

=
7− 6i

17
c2 (5.21)

Then the normalization condition gives∣∣∣∣7− 6i

17

∣∣∣∣2 c2
2 + c2

2 = 1(
85

289
+ 1

)
c2

2 = 1

c2 = ± 289√
374

. (5.22)

Hence, the other eigenvector with eigenvalue -3 is

|v2〉 = ±119− 102i√
374

|e1〉 ±
289√
374
|e2〉+ 0 |e3〉 (5.23)

The Final Results:

The eigensystem of A is as follows:

Eigenvalue Eigenvector(s)

2 |v1〉 = ∓ 7+4i
3
√

26
|e1〉 ± 13

3
√

26
|e2〉

-3
|v2〉 = ±119−102i√

374
|e1〉 ± 289√

374
|e2〉

|v3〉 = |e3〉

Because the matrix A that we started with was Hermitian, these eigenvectors must be
mutually orthogonal. The final orthogonal must be orthogonal to the first two because the
basis vectors form an orthogonal set. It can be shown that the first two are orthogonal. (If
they aren’t, then I made a mistake in the diagonalization process.)
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5.2.3 Expansion in a basis of eigenvectors

Solving for the eigensystem of an operator or matrix is sometimes referred to as diagonal-
izing the operator or matrix because an operator is diagonal in the basis of its eigenvectors.
Suppose we have a 3-by-3 matrix A that has 3 eigenvectors with eigenvalues λ1, λ2, and
λ3 with corresponding eigenvectors |λ1〉, |λ2〉, and |λ3〉, respectively. In the basis of its
eigenvectors, we know we can write the matrix representation of A as

A =

 | | |
Â |λ1〉 Â |λ2〉 Â |λ3〉
| | |

 =

λ1 0 0
0 λ2 0
0 0 λ3

 , (5.24)

where the second equality follows from the definition of an eigenvector, given in Eq. (5.1).
Hence, we see the sense in which solving for the eigensystem diagonalizes the operator Â.

The logic of this goes both ways. If you are given (or determine) the matrix representation
of some operator, and you see that it is a diagonal matrix, then the eigenvalues are the
diagonal elements of the matrix and the eigenvectors are the basis vectors that define the
matrix representation.

We can also make powerful statements about matrices that are block diagonal. Specif-
ically, the eigenvalues (eigenvectors) of a block diagonal matrix can be obtained as the
eigenvalues (eigenvectors) of each of the blocks individually.

In the case worked above, notice that the matrix takes the form of a 2-by-2 block followed
by a 1-by-1 block. This form means that we can diagonalize each block individually. In
particular, the diagonalizing the 1-by-1 block is trivial, and it has the eigenvalue −3 and the
eigenvector |v3〉, which, again, is what we saw above.

5.3 Functions of matrices

The function of an operator (or matrix) is defined in terms of the Taylor series expansion of
the function:

f(A) =
∞∑
n=0

f (n)(0)
An

n!
. (5.25)

The power of a matrix A is not a trivial thing to compute by hand unless the matrix A is
a diagonal matrix. Powers of a diagonal matrix

D =

D1 0 0
0 D2 0
0 0 D3

 (5.26)

are given by the power of the elements of the matrix, viz.

Dn =

(D1)n 0 0
0 (D2)n 0
0 0 (D3)n

 . (5.27)

You can convince yourself of this by evaluating the case of a smaller matrix, like D2 for a
3-by-3 matrix, or by rigorously proving it with methods we discuss below.
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In any case, the importance of diagonal representations of matrices highlights the utility
of the eigenbasis of an operator, because we have shown above that an operator is diagonal
in its eigenbasis.

We can obtain the same result a different way by expanding a vector of interest |ψ〉 in
the eigenbasis of the operator A as we have done for other bases previously. In the general
case of an N -dimensional vector space, we can write

|ψ〉 =
∑
k

λk |k〉 , (5.28)

where the kets {|k〉} are eigenvectors of the operator Â with eigenvalues {λk}. Then the
action of Â on |ψ〉 is given by

Ân |ψ〉 =
∑
k

ckÂ
n |k〉 . (5.29)

Because |k〉 is an eigenvector of Â,

Ân |k〉 = λkÂ
n−1 |k〉 = λ2

kÂ
n−2 |k〉 = · · · = λnk |k〉 . (5.30)

Hence, we have

Ân |ψ〉 =
∑
k

λnk |k〉 . (5.31)

In terms of evaluating a function of an operator, then, we have

f(A) |ψ〉 =
N∑
k

ck

∞∑
n=0

f (n)(0)
1

n!
An |k〉

=
N∑
k

ck

(
∞∑
n=0

f (n)(0)
1

n!
λnk

)
|k〉

=
N∑
k

ckf(λk) |k〉 . (5.32)

This is a compact expression that we can evaluate for all sorts of functions of operators, like
exp(A), A−1, and others. This expression only holds for the eigenbasis of Â. Because of
this, it is incredibly common that you will need to change to the eigenbasis of
the operator of interest in order to make any progress. This is particularly true for
problems involving time evolution (how a system changes with time), where the operator of
interest is the Hamiltonian.

5.4 Summation notation

Our final topic in linear algebra is a little bit more technical, and it develops the tools
necessary to do general proofs in linear algebra. We have, by and large, steered clear of
proofs in the bootcamp curriculum, choosing to focus our time on underlying concepts and
the mechanics of problem solving. Still, you will need to use linear algebra prove things in

63



5.4 Summation notation 5 LA3: MATRIX ALGEBRA

your quantum mechanics coursework, and summation notation is the way to prove things in
the general case in linear algebra.

This section takes the algorithms we commonly use to compute matrix/vector operations
and formalizes them into summation notation. It can be tricky to get used to at first,
and I recommend working out each of the operations below for small (2-dimensions is fine!)
matrices and vectors to get the hang of what the expressions are saying.

The Kronecker delta. The Kronecker delta (δij) is defined according to

δij =

{
1 if i = j

0 if i 6= j
. (5.33)

This term comes up a lot when we are working with diagonal matrices, where we might write
something like

Dij = diδij, (5.34)

to indicate that the element at the ith row and the jth column of the diagonal matrix D is
zero unless the row number and the column number are the same (hence we only need one
index, i in this case, to specify the value of the elements {di}.

It also comes up when we work with in an orthonormal basis, which we do often. In fact,
it is actually common to write the condition of orthonormality with a Kronecker delta. If a
set of basis vectors {|φi〉} is orthonormal, then the inner product

〈φi|φj〉 = δij (5.35)

must hold for all possible values of i and j in the basis. In essence, this equation says that
the value of the inner product is 1 if the two basis vectors in the inner product are the same
(the basis is normalized) and that the value of the inner product is 0 if the two basis vectors
are different (all pairs of vectors in the basis are orthogonal).

Mechanically, we can use the Kronecker delta to simplify and eliminate various sums. As
a contrived example, suppose we have the sum over two indices i and j given below:∑

ij

aibjδij. (5.36)

Because of the definition of the Kronecker delta, we will multiply the expression being
summed by zero for all of the terms where i 6= j. The only terms that “survive” the
Kronecker delta are those where i = j, and we can simplify the sum as∑

ij

aibjδij =
∑
i

aibi. (5.37)

The upshot is this: when we sum over both indices of a Kronecker delta, we can replace the
sum over two indices with a sum over one index, replacing the label of one of the indices
with the other.

64



5.5 Connections to physical chemistry 5 LA3: MATRIX ALGEBRA

Inner product. The inner product of two N -dimensional vectors v and w is given by

〈v|w〉 =
N∑
i

v∗iwi. (5.38)

Matrix–vector multiplication. For the matrix equation

Av = w,

where A is a matrix with elements Aij at the ith row and the jth column and v and w are
vectors with elements vi and wi, the ith element of w can be obtained as

wi =
∑
j

Aijvj. (5.39)

Matrix–matrix multiplication. Likewise, if we want to multiply two matrices A and B
together to obtain a third matrix C according to

AB = C, (5.40)

we can obtain each of the elements Cij as

Cij =
∑
k

AikBkj. (5.41)

It can be difficult to remember which index should be summed over while you are getting
used to this notation. It can be helpful to remember that indices that are adjacent to each
other in the expression are usually summed over, while those on the outside of expressions
are not.

Matrix trace. The trace of anN -by-N square matrix A is the sum of its diagonal elements,
which we write as

Tr(A) =
∑
i

Aii. (5.42)

Example 5.1: Prove that the kth power of an N -by-N diagonal matrix D can be obtained
by raising each of the elements of D to the kth power.

5.5 Connections to physical chemistry

Eigensystems are relevant to physical chemistry and quantum mechanics because in the latter
we postulate that the measurement of some observable will always take on the value of one of
the eigenvalues of operator that corresponds to this observable. Furthermore, we postulate
that the state of the system after measurement corresponds to the eigenvector/eigenspace
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associated with the eigenvalue that was measured. In this way, eigensystems show up any
time we are interested in the properties of a quantum mechanical system—which is all the
time! We will also commonly transform a vector into the eigenbasis of a particular operator
in order to make our mathematical manipulations more straightforward.

Functions of matrices become an important topic when we start to use the Schrödinger
equation to consider the time evolution of a quantum mechanical system. We will need to
exponentiate the Hamiltonian matrix in order to consider this, and this is done using the
Taylor series expansion that was described in Section. 5.3 above.

As indicated in the notes, summation notation is used to prove things in linear algebra,
and by extension in quantum mechanics as well as statistical mechanics, although to a more
limited extent. Facility with these concepts will enable you to better understand and work
through important derivations in your coursework and in research.

5.6 Example problem solutions

Example 5.1: Prove that the kth power of an N -by-N diagonal matrix D can be obtained
by raising each of the elements of D to the kth power.

We start with the example where k = 2 and then generalize from there. The ij’th element
of the square of the matrix D is given by

(D2)ij =
∑
k

DikDkj. (5.43)

Because D is a diagonal matrix, we must have

Dij = δijDii. (5.44)

Hence, we can simplify the preceding expression to

(D2)ij =
∑
k

δijδkjDiiDkk = DiiDii = D2
ii, (5.45)

because the two Kroenecker delta’s make every time in the sum where k 6= i vanish. Based
on induction, we can see that this result generalizes to any integral value of k. To see this,
we can write

(D3)ij = (D2 ·D)ij

=
∑
k

(D2)ikDkj

=
∑
k

D2
iiDkj

=
∑
k

D2
iiδkjDkk

= D3
ii (5.46)
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In words, we have shown that the kth power of an N -by-N diagonal matrix can be obtained
by raising each of the elements of the matrix to the kth power for k = 2, and that the fact
that this is true for k implies that it is true for k + 1. Hence, it must be true for all k > 2.
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